

Integrating Ontologies and Rules in a Semantic Business: From Policies to Operation

Adeline Nazarenko Luis Polo Thomas Eiter Jos de Bruijn Antonia Schwichtenberg Stijn Heymans (Paris 13, CTIC, TU Vienna, ontoprise)

30 May 2010 - ESWC 2010 Tutorials

Aim of this tutorial

You will understand:

- 1. How NLP can help to extract business knowledge from policy
- 2. What type of business knowledge is typically modeled as an ontology and what knowledge as rules (both logical and production
- 3. Which approaches to combining ontologies and rules are currently available; which ones are implemented
- 4. How to choose the appropriate combination paradigm for your goals;
- 5. How to model a combination of ontologies and rules using mature

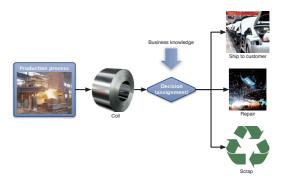
ONTORULE

(2/227)

© ONTORULE Consortium, all rights reserved

Contents of the tutorial

- 1. From Business Policy Documents to a Business Model (1 hour 15
- 2. Integrating Ontologies and Rules (2 hours 45 minutes)
 - 2.1 OWL 2 ontologies (45 minutes)
 - 2.2 Logic Programming and Production Rules (45 minutes)
 - 2.3 Integration (1 hour)
 - 2.4 Demo (15 minutes)


(5/227)

(6/227)

ONTORULE

© ONTORULE Consortium, all rights reserved

Business Scenario

© ONTORULE Consortium, all rights reserved

Part I

From Business Policy Documents to a Business Model

(3/227) ONTORULE © ONTORULE Consortium, all rights reserved

Acknowledgements

► The ONTORULE project consortium: ILOG (an IBM Company), ontoprise, Free University of Bolzano, Vienna University of Technology, PNA, Université Paris 13, Fundación CTIC, Audi and ArcelorMittal

http://ontorule-project.eu

▶ This tutorial is co-funded by the European Union (FP7)

(7/227)

ONTORULE

© ONTORULE Consortium, all rights reserved

Overview of Part I

Building business models from written policies

State of the art

Ontology design Ontology population Information extraction

Corpus design

Ontology acquisition

Terminological analysis Term normalizationion Conceptualizationion Relation identification

Business rule acquisition

Semantic Business Vocabulary and Rules

Why starting from texts?

ONTORULE

Distributional approach

An alternative source of information

- Expert knowledge is difficult to make explicit
- Experts are seldom available for intensive interviews
- Large amount of written information is available
- Analysts usually exploit texts to prepare interviews

A challenge for knowledge management

- ▶ Business models must be documented
- ▶ Traceability of business models is often critical
- The source documents must be maintained together with the business models

(10/227)

© ONTORULE Consortium, all rights reserved

What can be extracted from texts?

ONTORULE

(15/227)

Völker, 2005]

Example

© ONTORULE Consortium, all rights reserved

Terminological approach

Although

- ▶ Documents do not contain all the relevant information
- ▶ Domain knowledge is seldom explicit

Texts are precious source of information

- Documents often express factual knowlegde about the domain entities, their properties, their evolution and their relations
- ▶ Documents also reflect the underlying domain knowledge : what are the relevant concepts? how do they relate to each other?
- Policy documents express the business rules that are relevant for the domain.

The terms are words and compounds form the domain vocabulary Example

The context in which the words occur reflect their meaning. Words with

similar meanings tend to appear in similar contexts [Harris et al., 1989].

Semantic classes extracted from texts are supposed to represent domain

mechanical properties

mechanical strength

mechanical process mechanical behaviour

Semantic classes of words can be built out of a distributional analysis.

[Hindle, 1990][Dagan et al., 1993][Habert et al., 1996][Nazarenko et al.,

1997][Faure and Nédellec, 1999][Maedche and Staab, 2001][Cimiano and

concepts but results are noisy and difficult to exploit.

mechanical properties coil yield point elongation strengh

The terms extracted from a text reflect the domain vocabulary but a lot of manual work is necessary for filtering, structuring, modeling.

Given a conceptual model (ontological T-Box), named entity recognition tools can be used to extract the concept and relation instances and thus

Textual units that are similar to proper names which meaning is built

[Aussenac-Gilles et al., 2000] [Aussenac-Gilles et al., 2008] [Szulman et al., 2009al

(11/227) ONTORULE (20°C)

© ONTORULE Consortium, all rights reserved

Example of text

(16/227) ONTORULE © ONTORULE Consortium, all rights reserved

Ontology population

Product Definition

(12/227)

© ONTORULE Consortium, all rights reserved

Building a hierarchy of concepts

(17/227)

STRIP BH2 2% Nitrogen

Example

© ONTORULE Consortium, all rights reserved

Information extraction

Two main approaches

- ► A distributional approach for "learning" ontologies
- A terminological approach for assisting the conceptualizationion task

Definition (Information extraction)

enrich the ontological A-Box.

Definition (Named entities)

through the operation of reference.

[Magnini et al., 2006] [Giuliano and Gliozzo, 2008]

A set of techniques for automatically extracting structured information from unstructured textual documents

[Sundheim, 1992][Grishman and Sundheim, 1996]

Example

Who gives a conference, when and where?

Goals

- Extracting relations between entities
- Discovering concepts properties and relations [Hearst, 192] [Aussenac-Gilles and Jacques, 2008]
- Extracting business rules

Information extraction method

ONTORULE 2000

Ontology design

Information relies on extraction patterns that must be carefully designed to achieve good precision and recall.

Example

 $noun_1$, $noun_2$, ... and other $noun_3 \rightarrow noun_1 < noun_3$

Hospitals, schools and other public buildings \rightarrow school < public building Mr. $X \rightarrow X$ is an instance of MAN

Difficulties

- Extraction patterns are often corpus dependent
- Manual design is tedious and error prone
- Machine learning can help but requires large amount of annotated data to extract relational information [Califf M. E., 1998] [Brin, 1999]

(19/227)

© ONTORULE Consortium, all rights reserved

Building business models from texts

Goal Combining state-of-the-art approaches

- ► To bootstrap and help business modeling
- To enable business analyst to author business models
- To deliver understandable business models
- ▶ To anchor business models in policies

Strategy Three major steps

- Designing an acquisition corpus
- Acquiring the domain conceptual model (domain
- Modeling business rules

(20/227)

© ONTORULE Consortium, all rights reserved

Corpus design

Designing an acquisition corpus is a complex task [Atkins et al., 1992]

- An acquisition corpus is application dependent
- ldentifying relevant documents is challenging in many organizationions
- There exist a wide variety of source documents
 - ► Text types: educational material reflecting domain vs. working papers expressing factual knowledge
 - Corpus size: from 10 Kwords to 100 Mwords
 - Redundancy
 - Technicality
 - Target audience
- ► There may be missing pieces of knowledge
- Documents are often redundant
- Some documents may be confidential

How to achieve a good representativity of the domain to model?

ONTORULE

In practice

- There is no stable methodology or acknowledged good practice to design acquisition corpus: all use cases are different.
- Knowledge engineers try to inventory the available documentation, from which they extract the most useful documents.

Example (ArcelorMittal use case)

- ► Extract from the product catalogue (10 pages, 3,500 words)
- ▶ Use case description (2,200 Kwords)
- Description of the order Assignment at galvanizationion Line (1,000 words)
- ► Email discussion with experts

The TERMINAE approach to ontology acquisition

[Aussenac-Gilles et al., 2008][Szulman et al., 2009b]

- An interactive approach
- A terminological approach

TERMINAE tool (http://www-lipn.univ-paris13.fr/ szulman/logi/index.html)

(25/227)

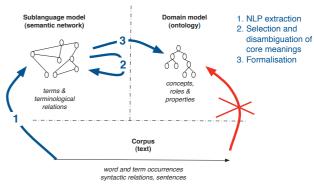
© ONTORULE Consortium, all rights reserved

From texts to domain model

Texts present a view of the underlying domain model ...

- ▶ Domain vocabulary: hardening element, iron crystal lattice
- ► Controlled meaning: *elements = chemical element*
- ► Situated communication (e.g. actors, locations, roles)
- ► Explicit domain knowledge: The grain structure of steel influences
- ► Factual knowledge: Coil #13 is a coil, with length 670 meters, currently located in Aviles factor.

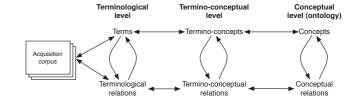
But a partial and distorted view


- ▶ Synonymy: defects = non-conformities
- Polysemy: (lab test) $results \neq result$ (of the assignment process)
- Presuppositions

(26/227)

© ONTORULE Consortium, all rights reserved

From a corpus to an ontology



(27/227)

© ONTORULE Consortium, all rights reserved

Overall approach

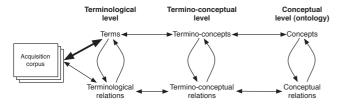
Example

Source text The Galvanizationion Line processes coils [...] inducing residual carbon precipitation

Tagged text The Det Galvanizationion Noun Line Noun processes Verb coils_{Noun} [...] inducing_{Verb} residual_{Adl} carbon_{Noun} precipitation_{Nous}

Parsed text The [Galvanizationion Line]_{NP} processes_{Verb} coils_{Noun} [...] inducing_{Verb} [residual carbon precipitation]_{NP}

Disambiguation [[residual carbon] precipitation] or [residual [carbon precipitation]]?


Extracted terms Galvanizationion Line, coils, residual carbon, residual carbon precipitation

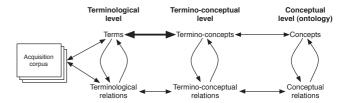
(33/227)

© ONTORULE Consortium, all rights reserved

2nd step: Term normalizationion

(29/227) ONTORULE

(c) ONTORULE Consortium, all rights reserved Terminology extraction


Definition (Terminology)

The body of words or terms relating to a particular subject, field of activity or branch of knowledge.

Definition (term extractor)

Tools that take a domain specific acquisition corpus as input and output a list of specialized term candidates (e.g. YaTeA [Aubin and Hamon, 2006]) Underlying hypothesis

- ▶ The relevant terms of a corpus reflect the domain concepts
- Terminological analysis can bootstrap the ontology design

(34/227)

© ONTORULE Consortium, all rights reserved

Term normalizationion

ONTORULE (20°C)

(30/227)

Terminology extraction and tagging

© ONTORULE Consortium, all rights reserved

Example

The Galvanizationion Line processes coils, long strips of steel, to provide them a coating of zinc; this coating will give the product an improved surface aspect as well as protection from <u>corrosion</u>. During the process the mechanical properties, such as the yield strength, of the steel are also changed due to the thermal cycle it goes through.

Goal: abstracting from language peculiarities?

- ► Term filtering and selection (noise)
- Term variant clustering (synonymy)
- Term disambiguation (polysemy)

- A semantic network of normalized terms and terminological relations
- ► TERMINAE can export the result in SKOS

(31/227)

© ONTORULE Consortium, all rights reserved

Terminology extraction: methods

(35/227) http://www.w3.org/2004/02/skos/

© ONTORULE Consortium, all rights reserved

Term filtering and selection

Linguistic approach

- Corpus tagging
- Shallow syntactic analysis to identify phrase boundaries
- Endogeneous disambiguation based on corpus redundancy
- Statistical approach
 - ► Repeated word sequences
 - Associated pairs of words
 - ► Syntactically filtered collocations
- Mixed approach
 - Syntactically filtered collocations

[Daille et al., 2004] [Pazienza et al., 2005]

Term extractors provide noisy results (candidate terms) that must be further filtered [Nazarenko and Zargayouna, 2009]

- ► Terminology creation is a social process: there is a consensus within a given community to use a term t with a specific meaning
- ► Termhood cannot be fully captured through linguistic and statistical
- Generic extractors cannot capture all the domain peculiarities

Validation interfaces allow for

- ► Character based filtering
- Lexical filtering
- ► Term ranking (ordered by frequency, tf.idf, etc.)

© ONTORULE Consortium, all rights reserved

(36/227)