Assessing the Safety of Knowledge Patterns in OWL
Ontologies

Luigi Iannone, Ignazio Palmisano, Alan L. Rector, and Robert Stevens

University of Manchester
Kilburn Building
Oxford Road M13 9PL
Manchester, UK

lastname@cs.manchester.ac.uk

Abstract. The availability of a concrete language for embedding knowledge pat-
terns inside OWL ontologies makes it possible to analyze their impact on the
semantics when applied to the ontologies themselves. Starting from recent re-
sults available in the literature, this work proposes a sufficient condition for iden-
tifying safe patterns encoded in OPPL. The resulting framework can be used
to implement OWL ontology engineering tools that help knowledge engineers
to understand the level of extensibility of their models as well as pattern users to
determine what are the safe ways of utilizing a pattern in their ontologies.

1 Introduction

OWL ontologies may be built for the most disparate purposes. Yet, as soon as they are
made public, the problem of their extension arises. The presence of the owl : import
primitive in the language testifies to the inclination of OWL to encourage ontology re-
use. The addition of any axiom to an ontology does, however, modify its semantics.
The extent of the impact of these alterations can be evaluated, but , at the moment, not
anticipated or formally analyzed when an ontology is either being developed or recently
released. The knowledge engineers, at the current state of the art, have only annotations
for documenting what are the possible extensions of their ontology, and there is no
formal language for their encoding.

The effect of this limitation is better explained using an analogy. Let us suppose for
a moment that the Java programming language did not provide the final primitive
to specify that a certain Java class/method cannot be sub-classed/overridden. API de-
velopers could not prevent their users from extending portions of the API object model
that are meant to be fixed and non extensible. The consequence would be that all the
assumptions about some pieces of code behaving in a fixed and pre-determined way
would no longer hold, thus making the re-use of third party code more unpredictable
and unreliable. One could argue that knowledge re-use is meant to be more flexible
than the code counterpart, that is why we observe that nothing as strict as the £inal
primitive is needed. What we claim, though, is that it would be useful if the knowledge
engineer, whilst developing their ontologies, could specify what and how to extend it
in order to remain compliant with its original meta-model. The users could then de-
cide whether to follow such guidelines or not, but natural language annotations are too

L. Aroyo et al. (Eds.): ESWC 2010, Part I, LNCS 6088, pp. 137-151, 2010.
(© Springer-Verlag Berlin Heidelberg 2010



