
Assessing the Safety of Knowledge Patterns in OWL

Ontologies

Luigi Iannone, Ignazio Palmisano, Alan L. Rector, and Robert Stevens

University of Manchester

Kilburn Building

Oxford Road M13 9PL

Manchester, UK

lastname@cs.manchester.ac.uk

Abstract. The availability of a concrete language for embedding knowledge pat-

terns inside OWL ontologies makes it possible to analyze their impact on the

semantics when applied to the ontologies themselves. Starting from recent re-

sults available in the literature, this work proposes a sufficient condition for iden-

tifying safe patterns encoded in OPPL. The resulting framework can be used

to implement OWL ontology engineering tools that help knowledge engineers

to understand the level of extensibility of their models as well as pattern users to

determine what are the safe ways of utilizing a pattern in their ontologies.

1 Introduction

OWL ontologies may be built for the most disparate purposes. Yet, as soon as they are

made public, the problem of their extension arises. The presence of the owl:import

primitive in the language testifies to the inclination of OWL to encourage ontology re-

use. The addition of any axiom to an ontology does, however, modify its semantics.

The extent of the impact of these alterations can be evaluated, but , at the moment, not

anticipated or formally analyzed when an ontology is either being developed or recently

released. The knowledge engineers, at the current state of the art, have only annotations

for documenting what are the possible extensions of their ontology, and there is no

formal language for their encoding.

The effect of this limitation is better explained using an analogy. Let us suppose for

a moment that the Java programming language did not provide the final primitive

to specify that a certain Java class/method cannot be sub-classed/overridden. API de-

velopers could not prevent their users from extending portions of the API object model

that are meant to be fixed and non extensible. The consequence would be that all the

assumptions about some pieces of code behaving in a fixed and pre-determined way

would no longer hold, thus making the re-use of third party code more unpredictable

and unreliable. One could argue that knowledge re-use is meant to be more flexible

than the code counterpart, that is why we observe that nothing as strict as the final

primitive is needed. What we claim, though, is that it would be useful if the knowledge

engineer, whilst developing their ontologies, could specify what and how to extend it

in order to remain compliant with its original meta-model. The users could then de-

cide whether to follow such guidelines or not, but natural language annotations are too

L. Aroyo et al. (Eds.): ESWC 2010, Part I, LNCS 6088, pp. 137–151, 2010.

c© Springer-Verlag Berlin Heidelberg 2010


