Querying Temporal Databases via OWL 2 QL

Abstract

SQL:2011, the most recently adopted version of the SQL query language, has unprecedentedly standardized the representation of temporal data in relational databases. Following the successful paradigm of ontology-based data access, we develop a practical approach to querying the SQL:2011-based temporal data model via the semantic layer of OWL 2 QL. The interval-based temporal query language (TQL), which we propose for this task, is based on naturally characterizable combinations of temporal logic with conjunctive queries. As the central contribution, we present rules for sound and complete rewriting of TQL queries into two-sorted first-order logic, and consequently, into corresponding SQL queries, which can be evaluated in any existing relational database management system compliant with the SQL:2011 temporal data model. Importantly, the proposed rewriting is based on the direct reuse of the standard rewriting techniques for conjunctive queries under OWL 2 QL. This renders our approach modular and easily implementable. As a notable corollary, we show that the data complexity of TQL query answering remains in AC^0, i.e., as in the usual, non-temporal case.

Szymon Klarman and Thomas Meyer

Centre for Artificial Intelligence Research,
CSIR Meraka and University of KwaZulu-Natal, South Africa
{sklarman,tmeyer}@csir.co.za

Abstract. SQL:2011, the most recently adopted version of the SQL query language, has unprecedentedly standardized the representation of temporal data in relational databases. Following the successful paradigm of ontology-based data access, we develop a practical approach to querying the SQL:2011-based temporal data model via the semantic layer of
1 Introduction

The ability to manage the temporal aspects of information is critical for a variety of applications. One natural and prevailing scenario is that of representing and querying the validity time of data, i.e., the time during which data is deemed true about the application domain. The significance of this task is particularly visible in the area of semantic technologies, where the systematically growing number of proposed solutions, building on different levels of the Semantic Web architecture and differing in the flavour and depth of temporal reasoning they support, aim at addressing essentially the same problem [15, 16, 22, 7, 12]. A very similar proliferation of proposals was witnessed in the 1990s in the field of temporal databases. Intensive attempts to extend the traditional relational data model and SQL with temporal features inspired then a large body of candidate specifications, including such extensions as TSQL2, SQL3 or SQL/Temporal [23], which eventually failed to be adopted by the database community due to the persistent lack of consensus as to the preferred approach. Only very recently that discussion has been picked up again and a compromise temporal extension has eventually found its way into SQL:2011 [20] — the newest standardization.
Chapter Metrics

Citations

About this Chapter

Title
Querying Temporal Databases via OWL 2 QL

Book Title
Web Reasoning and Rule Systems

Book Subtitle
8th International Conference, RR 2014, Athens, Greece, September 15-17, 2014. Proceedings

Pages
pp 92-107

Copyright
2014

DOI
10.1007/978-3-319-11113-1_7

Print ISBN
978-3-319-11112-4

Online ISBN
978-3-319-11113-1

Series Title
Lecture Notes in Computer Science

Series Volume
8741

Series ISSN
0302-9743

Publisher
Springer International Publishing

Copyright Holder
Springer International Publishing Switzerland

Additional Links

- About this Book

Topics

- Information Systems Applications (incl. Internet)
- Information Storage and Retrieval
- Database Management
- Data Mining and Knowledge Discovery
- Software Engineering
- Computation by Abstract Devices
Industry Sectors

- Electronics
- Telecommunications
- IT & Software

eBook Packages

- eBook Package english Computer Science
- eBook Package english full Collection

Editors

- Roman Kontchakov (15)
- Marie-Laure Mugnier (16)

Editor Affiliations

- 15. Department of Computer Science and Information Systems, Birkbeck, University of London
- 16. LIRMM

Authors

- Szymon Klarman (17)
- Thomas Meyer (17)

Author Affiliations

- 17. Centre for Artificial Intelligence Research, CSIR Meraka and University of KwaZulu-Natal, South Africa

Continue reading...

To view the rest of this content please follow the download PDF link above.