Query Answering over Contextualized RDF/OWL Knowledge with Forall-Existential Bridge Rules: Attaining Decidability Using Acyclicity

Abstract

The recent outburst of context-dependent knowledge on the Semantic Web (SW) has led to the realization of the importance of the quads in the SW community. Quads, which extend a standard RDF triple, by adding a new parameter of the ‘context’ of an RDF triple, thus informs a reasoner to distinguish between the knowledge in various contexts. Although this distinction separates the triples in an RDF graph into various contexts, and allows the reasoning to be decoupled across various contexts, bridge rules need to be provided for inter-operating the knowledge across these contexts. We call a set of quads together with the bridge rules, a quad-system. In this paper, we discuss the problem of query answering over quad-systems with expressive forall-existential bridge rules. It turns out the query answering over quad-systems is undecidable, in general. We derive a decidable class of quad-systems, namely context-acyclic quad-systems, for which query answering can be done using forward chaining. Tight bounds for data and combined complexity of query entailment has been established for the derived class.
Query Answering over Contextualized RDF/OWL Knowledge with Forall-Existential Bridge Rules: Attaining Decidability Using Acyclicity

Mathew Joseph1,2, Gabriel Kuper2, and Luciano Serafini1

1 DKM, FBK-IRST, Trento, Italy
2 DISI, University Of Trento, Trento, Italy
\{mathew,serafini\}@fbk.eu, kuper@disi.unitn.it

Abstract. The recent outburst of context-dependent knowledge on the Semantic Web (SW) has led to the realization of the importance of the quads in the SW community. Quads, which extend a standard RDF triple, by adding a new parameter of the 'context' of an RDF triple, thus informs a reasoner to distinguish between the knowledge in various contexts. Although this distinction separates the triples in an RDF graph into various contexts, and allows the reasoning to be decoupled across various contexts, bridge rules need to be provided for inter-operating the knowledge across these contexts. We call a set of quads together with the bridge rules, a quad-system. In this paper, we discuss the problem of query answering over quad-systems with expressive forall-existential bridge rules. It turns out the query answering over quad-systems is undecidable, in general. We derive a decidable class of quad-systems, namely context-acyclic quad-systems, for which query answering can be done using forward chaining. Tight bounds for data and combined complexity of query entailment has been established for the derived class.

Keywords: Contextualized RDF/OWL knowledge, Contextualized Query Answering, Quads, Forall-Existential Rules, Semantic Web, Knowledge Representation.

1 Introduction

One of the major recent changes in the SW community is the transformation from a triple to a quad as its primary knowledge carrier. As a consequence, more and more triple stores are becoming quad stores. Some of the popular quad-stores are 4store4, Openlink Virtuoso5, and some of the current popular triple stores like Sesam6 internally keep track of the context by storing arrays of four names \((c, s, p, o)\) (further denoted as \(e : (s, p, o)\)), where \(c\) is an identifier that stands for the context of the triple \((s, p, o)\). Some of the recent initiatives in this direction have also extended existing formats like N-Triples to N-Quads. The latest Billion triples challenge datasets (BTC 2012) have all been released in the N-Quads format.

4http://4store.org
5http://virtuoso.openlinksw.com/rdf-quad-store/
6http://www.openrdf.org/

© Springer International Publishing Switzerland 2014

No Body Text -- translate me!
Page 2
No Body Text -- translate me!

Computation by Abstract Devices

Keywords
- Contextualized RDF/OWL knowledge
- Contextualized Query Answering
- Quads
- Forall-Existential Rules
- Semantic Web
- Knowledge Representation

Industry Sectors
- Electronics
- Telecommunications
- IT & Software

eBook Packages
- eBook Package english Computer Science
- eBook Package english full Collection

Editors
- Roman Kontchakov (15)
- Marie-Laure Mugnier (16)

Editor Affiliations
- 15. Department of Computer Science and Information Systems, Birkbeck, University of London
- 16. LIRMM

Authors
- Mathew Joseph (17) (18)
- Gabriel Kuper (18)
- Luciano Serafini (17)

Author Affiliations
- 17. DKM, FBK-IRST, Trento, Italy
- 18. DISI, University Of Trento, Trento, Italy

Continue reading...
To view the rest of this content please follow the download PDF link above.