Please use this identifier to cite or link to this item: http://swig.hpclab.ceid.upatras.gr/dspace-ss-demo/handle/123456789/18
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVidal, María-Esther-
dc.contributor.authorRaschid, Louiqa-
dc.contributor.authorMárquez, Natalia-
dc.contributor.authorRivera, Jean Carlo-
dc.contributor.authorRuckhaus, Edna-
dc.date.accessioned2011-04-13T14:58:34Z-
dc.date.available2011-04-13T14:58:34Z-
dc.date.issued2010-
dc.identifier.otherDOI:10.1007/978-3-642-13489-0_40-
dc.identifier.urihttp://swig.hpclab.ceid.upatras.gr/dspace-ss-demo/handle/123456789/18-
dc.descriptionBest Poster Award at ESWC 2009en_US
dc.description.abstractWe demonstrate BioNav, a system to efficiently discover potential novel associations between drugs and diseases by implementing Literature-Based Discovery techniques. BioNav exploits the wealth of the Cloud of Linked Data and combines the power of ontologies and existing ranking techniques, to support discovery requests. We discuss the formalization of a discovery request as a link-analysis and authority-based problem, and show that the top ranked target objects are in correspondence with the potential novel discoveries identified by existing approaches. We demonstrate how by exploiting properties of the ranking metrics, BioNav provides an efficient solution to the link discovery problem.en_US
dc.language.isoenen_US
dc.publisherSpringer-Verlag Berlin Heidelbergen_US
dc.relation.ispartofseriesLNCS 6089/2010;-
dc.subjectLinked Dataen_US
dc.subjectOntologyen_US
dc.subjectClouden_US
dc.subjectRankingen_US
dc.titleBioNav: An Ontology-Based Framework to Discover Semantic Links in the Cloud of Linked Dataen_US
dc.typeArticleen_US
Appears in Collections:Papers

Files in This Item:
File Description SizeFormat 
vidalESWC2010-abstract.pdf27.15 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.